
04--0

Ln Management Science Research Report No. MSRR-596

.DTIC
ELECTE

FB 181994
A PARALLEL IMPLEMENTATION OF THE COLUMN C

SUBTRACTION ALGORITHM -

T. H. C. Smith

Gerald L. Thompson

December 22, 1993

DT=C QUALITY ITSPECTED 2

Department of Computer Science
Rand Afrikaans University, P.O. Box 524
Aucklandpark 2006, South Africa

Graduate School of Industrial Administration
Carnegie Mellon University
Pittsburgh, PA 15213

Ap loved •zw puziic reltecw

D13n.Dubo U=i•j~tt4

The research underlying this report was supported by the Pittsburgh Super-
computing Center and the U. S. Office of Naval Research under Contract No.
N00014-85-K-0198 NR 047-048.

Mapagement Sciences Research Group
Graduate School of Industrial Administration

*- Carnegie Mellon University
Pittsburgh, PA 15213

94-05318
L01Ui11111 9-4. 2 1 040



Abstract : We have implemented Harche and Thompson's column sub-

traction algorithm for the set partitioning problem on a CM-200 Connection

Machine. The implementation involved partitioning the large array of proces-

sors in the CM-2 into segments and letting each segment explore a different

part of the search tree generated by the column subtraction algorithm. Our

reported computational results indicate that the segments are highly utilized

and that good speedups are obtained as the number of segments is increased.

Keywords : Parallel processing; branch-and-bound method; column sub-

traction; set partitioning

1 Introduction

Parallel computers make it possible to speed up the solution of a problem by

simultaneously using more than one processor in solving the problem. One

solution method that lends itself naturally to parallelization is a branch-and-

bound algorithm (which solves a large problem by first partitioning it into
"The computational experiments were performed while Smith was a Visiting Scholar --.-c.eIF-

at the Graduate School of Industrial Administration, Carnegie-Mellon University. NTIS CRA&I
t Research supported by the Pittsburgh Supercomputing Center and the U.S. Office of DTIC TAB

Unannounced
Naval Research under Contract No. N00014-85-K-0198 NR 047-048. Justilicatio,

BY
2 Distribution I

Availability Cod

Avail and I ot
Dist Special

P ý- .. I . _ _



subproblems and then solving each of the subproblems). In a parallel branch-

and-bound algorithm the different subproblems can be solved simultaneously

(in parallel) by different processors.

In an asynchronous parallel branch-and-bound algorithm each processor

independently obtains a subproblem from a list of subproblems and solves it

(possibly inserting new subproblems into the list). This continues until the

list is empty and all processors are idle.

Most of the experimental results for asynchonous parallel branch-and-

bound algorithms reported in the literature were obtained using a relatively

small number of processors. An example of such research is the work done

by Rushmeier and Nemhauser [4] who used a machine with 45 processors.

In [2] Loots and Smith experimented with an asynchronous parallel branch-

and-bound algorithm for the 0-1 knapsack problem using a machine with only

8 processors. In their algorithm different parts of the search tree are assigned

to different processors. Each of these processors then asynchronously per-

forms a depth first search on the part of the search tree assigned to it.

In this paper we will investigate a synchronous parallel branch-and-bound

algorithm using thousands of processors. The array of processors is parti-

tioned into segments, the problem is divided into the same number of sub-

3



problems as the number of segments and each segment synchronously perform

the same depth first branch-and-bound algorithm on a different subproblem.

2 The column subtraction algorithm

Let A be an m x n binary matrix, e a column vector of m ones, c a vector of

n positive integer costs and x a column vector of n decision variables. The

set partitioning problem (SPT) may then be defined as

minimize cX

subject to Ax = e

x E {O,11

Suppose T is an (m + 1) x (k + 1) matrix containing an optimal condensed

simplex tableau for the linear programming relaxation of SPT (note that

k = n - in). The columns of T are identified by the superscripts 0,... , k and

the elements of a column by the subscripts 0,..., m. Column T' contains

the negative of the optimal objective function value in Too and the values of

the basic variables in its other elements. For i > 0 column T' contains the

reduced cost of a nonbasic variable in To and the basis representaion of the

corresponding A column in its other elements. It is assumed that columns

4



T,... T' are in nondecreasing order of reduced costs.

The column subtraction algorithm of Harche and Thompson [1 for the

SPT performs a depth first search and is formulated in a pseudo-C language

in Figure 1. In the algorithm ub is an upper bound on the objective function

value of an optimal set partition. E is an (m + 1) x (k + 1) matrix used to

record the solutions at the various nodes of the depth first search tree and

save is a vector used to record which columns of T have been subtracted to

get to the current node in the search tree.

The initial value of tirn acts as an upper bound on the distance in T

between the first and last columns subtracted. As such it limits the depth of

the search and makes the algorithm an effective heuristic which finds good

set partitions quickly. The algorithm can be changed into an exact algorithm

by initializing tirn to k and deleting the if statement just before the end of

the outer loop.

The second condition in the while loop allows a forward move to be made

only if such a move will lead to a live node, i.e. a node for which the lower

bound on the optimal cost of a set partition is less than the upper bound.

5



t - 1; /* index of next column to be subtracted */

e a 0; /* number of columns subtracted for current solution */

Eo - o;

initialize ub and trnm;

do {

while((t <- tlrm) kk (To' - Eo < ub)) {

e++; /* move forward in search tree */

Ee = E"-' -T;

save, - t;

if(Ee defines a partition) ub - Eo;

)

t = savee + 1; e--; /* backtrack */

if ((e =0 0) && (t < trim)) tlim++;

} while(e >- 0);

Figure 1: Column subtraction algorithm.

6



3 Parallelization

If the column subtraction algorithm is executed by a single processor the m+ 1

subtractions involved in a column subtraction (the second step in the while

loop of the algorithm) must be carried as m + 1 sequential operations. On a

multiprocessor these subtractions can be done in parallel by m + 1 different

processors. Also the test for a partition can be parallelized by simultaneously

testing the last m elements of E' for integrality and nonnegativity on m

different processors.

We used a CM-2 Connection Machine with 32K processors in our study.

Each of these processors has its own 32KB local memory. The column sub-

traction algorithm can be parallelized by storing each row of the matrices T

and E in the local memory of a different processor and letting each processor

handle all subtractions and tests for the row in its memory.

However, on the CM-2 the number of processors allocated to a program

is always a multiple (a power of 2) of the number of processors in a quadrant

(8K). If m, the number of rows in A, is much smaller than 8K then the

processor utilization will be very low if the column subtraction algorithm is

parallelized as indicated in the previous paragraph.

7



In order to obtain better processor utilization we logically partition the

array of physical processors into segments where the size of a segment is a

power of 2 which exceeds m. Since the number of physical processors is a

power of 2, it follows that the number of segments is also a power of 2, say

2'. We identify the segments by the numbers 0,... , 2' - 1.

The matrix T is initially copied to all segments (one row per processor

for the first m + 1 processors in each segment). Each segment then executes

the column subtraction algorithm on a different part of the total search tree

using its own E matrix. Segment i starts out by logically setting the first 8

nonbasic variables equal to the bits in the 8-bit binary representation of the

segment number i. This is done by initializing E° to To and then subtracting

the combination of the first s columns of T corresponding to the nonzero bits

in the binary representation of i. For example if s = 3 then segment 5 will

compute E0 = rT - T' - T3 since the 3-bit binary representation of 5 is 1012.

After initializing E0 each processor simultaneously tests whether E£ de-

fines a partition. Also the index t is initialized to s + 1 to take into account

that the first a columns have already been considered when the segments

simultaneously enter the main loop of the column subtraction algorithm.

In the CM-2 each processor executes the same instruction sequence in

8



lockstep. This implies that each segment has to continue moving forward in

its part of the search tree so long as at least one of the segments is able to move

forward to a live node. All the segments backtrack simultaneously only when

no segment is able to move forward to a live node. Since some segments may

be making useless forward moves to dead nodes, it is of interest to observe

the segment utilization which is calculated at the end of the computation

as the ratio between the total number of live nodes explored and the total

number of explored nodes.

We implemented the parallelized column subtraction algorithm in the C*

language [5]. More detail of this implementation is provided in the appendix

which assumes that the reader has a working knowledge of C*.

4 Computational experience

We tested the parallelized column subtraction algorithm on the CM-2 Con-

nection Machine at the Pittsburgh Supercomputing Center. Our compu-

tational experience was obtained with a set of 5 random set partitioning

problems and a set of 5 three index assignment problems. Because of a limit

on the computing time available to us on the CM-2 we solved the linear pro-

9



gramming relaxation of the SPT on a different machine and transferred the

optimal tableau T to the CM-2.

The random set partioning problems each have 50 rows and 1000 columns.

They were randomly generated with an average density of 3.26% having at

least one nonzero in each column and at least two nonzero entries in each row.

The costs were generated randomly in the interval [1,1001. These problems

were solved using 1, 2, 4, ... , 64 and 128 segments. In all problems we

started the algorithm with tlim = 15 and ub 20% above the lower bound Too.

In Table 1 we report the averages for the number of live nodes explored, the

run time (in seconds), the segment utilization and the speedup (relative to

the run time using only one segment). Figure 2 is a line graph of the average

speedups for the different number of segments.

A three index assignment problem is an SPT with a special structure. It

has 3n rows and n3 columns where n is a positive integer (see [1] for more

detail). We considered five such problems with n = 15 and the costs randomly

generated in the interval [1,100]. Since these problems have a density of

6.67% the column subtraction algorithm takes longer to solve them than for

the random set partitioning problems. For this reason these problems were

only solved using 16, 32, 64 and 128 segments. In all these problems we

10



Number of Number of Run time Segment Speedup

segments live nodes utilization

1 134971.8 258.6 1.000

2 144111.0 138.9 0.991 1.81

4 150365.2 72.4 0.986 3.51

8 145460.4 35.0 0.981 7.27

16 171677.2 21.0 0.977 12.66

32 180887.6 11.3 0.958 22.56

64 157819.0 5.0 0.950 50.06

128 264844.6 4.4 0.933 83.06

Table 1: Averages for random set partitioning problems.

11



IS0

100.
C.

50, Speedup

0
0 50 100 150

No. Segnment

Figure 2: Average speedup for random set partitioning problems.

12



Number of Number of Run time Segment Speedup

segments live nodes utilization

16 3328837.6 441.2 0.950

32 3275352.0 221.8 0.933 2.07

64 3186272.2 112.8 0.907 4.58

128 3115957.6 58.1 0.879 12.46

Table 2: Averages for three index assignment problems.

started the algorithm with tirn = 20 and ub 30% above the lower bound

To. In Table 2 we again report the average performance (with the speedup

relative to the run time using 16 segments). Figure 3 is a line graph of the

average speedups for the different number of segments.

The large average segment utilization observed for both problem sets can

be explained by the fact that the reduced costs TJ,..., To of the first s

nonbasic variables are often very close to zero with the result that E• will

(almost) be the same for all segments and any e. This means that most of

the time all segments are able to move forward to live nodes, resulting in a

large segment utilization. Of course, this becomes less true as 8 increases (as

13



14

12

10

- Una Speedup

4

2-

0 20 40 60 8C 100 120 140

No. Segwmet

Figure 3: Average speedup for three index assignment problems.

14



reflected in the two tables by the decreasing average segment utilization for

increasing number of segments).

As can be seen from the results aD Table 2 it is possible to obtain super-

linear speedup, i.e. speedups of more than the factor by which the number

of segments increase. This possibility has been pointed out by Lai and Sahni

[3].

5 Conclusion

We have implemented the column subtraction algorithm for the set partition-

ing problem on a CM-2 Connection Machine. To the best of our knowledge

this is the first implementation of a synchronous branch-and-bound algorithm

for a massively parallel computer. One of the problems in implementing an

algorithm for such a computer is ensuring that all or most of the processors

are utilized throughout the computation.

Our implementation involved partitioning the large number of processors

into segments and letting each segment synchronously explore a different

part of the search tree generated by the column subtraction algorithm. The

reported computational results indicate that the different segments are highly

15



utilized and that good speedups are obtained as the number of segments is

increased.

The column subtraction algorithm is also applicable to other combinato-

rial optimization problems such as set packing and set covering. Our limited

computational experience with a parallelized column subtraction algorithm

for the set covering problem indicate that in that case high segment utiliza-

tion and good speedups are also obtainable.

"16



Appendix

The program uses the following global variables:

bool:physical zero-row, /* true if processor handles row 0 */

basic-row, /* true if processor handles one of rows I to m */

scansets, /* defines scan set for each segment */

flag; /* test result */

unsigned char:physical seg.num; /* segment number */

short:physical rowhnum; /* number of row handled */

float:physical nub; /* negative of current upper bound */

int seg.size, /* number of processors in a segment */

segEcount, /* number of segments */

log.seg-count; /* logarithm base 2 of seg-count */

float epsilon - 0.01f;

The parallel variables are initialized as follows:

with(physical) {

nub - -ub; /* assume upper bound ub has been initialized */

row-num = pcoord(O) % seg-size;

17



zero-row a (rowvnum -= 0);

basic-row - (!zero-rov) & (rov-num <= m);

scansets - !basic-row;

seg.num = pcoord(O) / seg-size;

We next list three functions used in the program. The first column of

E is set up for all segments before entering the do loop in the column sub-

traction algorithm by calling the setup.e function. The condition in the

while statement uses the function LB_lt_UB function to determine the num-

ber of segments which are able to make a forward move to a live node. If it

returns 0 then all the segments leave the while loop and backtrack in paral-

lel. Otherwise all the segments move forward to new nodes in parallel. The

test-solutions function is used within the while loop after a forward move

to test if any of the segments have found a set partition which yields a smaller

upper bound on the optimal cost of a set partition.

void setupe(float:physical *e, float:physical *t) {

/* e and t point to the first columns of E and T */

unsigned char:physical work;

" ~18



*0 * *t; /* copy first T column into first E column */

work- seg-num;

for(int i-1; i<-log-seg-count; i++) {

vhere(work % 2) *e -= *(t+i);

work >>= 1;

int LB-ltUB(float:physical. *e,float:physical *t)

/* e points to current column of E, t to next column of T */

where(zero.rov & (floor(*e - *t + epsilon) > nub))

return(+- (int:physical) 1) ;

int test-solutions(float:physical *e)

/* e points to current column of E */

/* if(smaller ub found) return(1); else return(O); */

float max-nub;

19



/* nonnegativity test *

vhere(basjc..row) flag -(*e > -epsilon);

flag - scan (flag,0, CMC-.coubiner..logand, CNC~dovnwaxd,

CI4C..seguient-.bit ,&scansets ,CMC-.exclusive);

if(Ia (zero-.row k flag)){

/* integrality test */

where(basic-.rov) flag -(*e * (1.01 - *e) < epsilon);

flag -scan(flag,0 ,CMC-.coubiner-.logand,CMC downward,

CMQ-seguent..bit ,&scansetu ,CMC..inclusive);

where(zero-row) {

flag k- (nub < floor(*. + epsilon));

if(I'. flag) f

/* at least one segment found a better partition *

whereCf lag) (

nub - floor(*e + epsilon);

max-.nub - >?- nub;

nub a max-.nub; /* distribute new nub *

returnl();

20



retuzrn(O);

References

1. F. Harche and G.L. Thompson, "The column subtraction algorithm:

an exact method for solving weighted set covering, packing and parti-

tioning problems", forthcoming in Computers and Operations Research

(1994).

2. W. Loots and T.H.C. Smith, "A parallel algorithm for the 0-1 knapsack

problem", International Journal of Parallel Programming 21 (1992)

349-362.

3. T. Lai and S. Sahni, "Anomalies in parallel branch-and-bound algo-

rithms", Journal of the ACM 27 (1984) 594-602.

4. R.A. Rushmeier and G.L. Nemhauser, "Experiments with parallel branch-

and-bound algorithms for the set covering problem" Operations Re-

search Letters 13 (1993) 277-285.

21



5. Thinking Machines Corporation, C' Programming Guide, Cambridge,

Massachusetts, 1993.

22



REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
_BEFORE COMPLETING FORM

L 35O NUNR 2. GOVT ACCESSION NO 3. RECIPIEtMS CATALOG NUMBER

MSRR-596

4 TrItL (aad 8hdtIe) 5 TYPE OF REPORT & PERIOD COVERED

A PARALLEL IMPLEMENTAT'ON OF THE COLUMN Technical Report, Dec. 1993
SUBTRACTION ALGORITHM

6. PERFORMING ORG. REPORT NUMBER

7. AW'KOR]S) & CONTRACT OR GRANT NUMBER(S)

T.H. C. Smith N00014-85-K-0198
Gerald L. Thompson

. PERFORMING ORGANIATION NAME AND ADDRESS 10. PRoG.RAM ELEMENT, PROJECT. TASK ARE
Graduate School of Industrial Administgration aWORK UNIT NUMBERS
Carnegie Mellon University
Pittsburgh, PA 15213

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Personnel and Training Research Programs December t993
Office of Naval Research (Code 434) 13. NUMBER OF PAGES
Arlington, VA 22217 22

14. MONITORING AGENCY NAME & ADDRES (If dilrmnt &hm Conraoft Ofc) 15. SECURiTY CLASS (of this tepwt)

La. DECLASSI ICATIOIDOWNGRADING
SCHEDULE

16. DISWRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abstact entered in Block 20, Ifdiffernt fum Rpaort)

I8. SUPPLEMENTARY-NOTES

19. KEY WORDS (Cotmin on reverside If necasary and idWent by block number)

Parallel processing
Branch-and-Bound method
Column subtraction
Set partitioning

20. ABSTRACT (Cam•nn. am reverse side if necmiary iad Ideni1a by bock number)
We have implemented Harche and Thompson s column subtraction algorithm for the set
partitioning problem on the CN-200 Connection Machine. The implementation involved part-
itioning the large array of processors in the CM-2 into segments and letting each
segment explore a different part of the search tree generated by the column subtraction
algorithm. Our reported computational results indicate that the segments are highly
utilized and that good speedups are obtained as the number of segments is increasdd.


